37 research outputs found

    Investigating Age-Related Factors in Phishing Susceptibility: A Focus on Decision-Making Processes in HCI Context

    Get PDF
    The widespread adoption of digital interfaces, amplified by the worldwide drive for digital inclusion, presents unique challenges, especially for older adults navigating the online realm. This research investigates aging populations\u27 pronounced susceptibility to phishing schemes—a sophisticated digital threat with significant financial and societal implications. This study seeks to explore human-computer interaction (HCI) security for older adults, examining the interplay of heuristic and deliberate decision-making processes while accounting for age-related cognitive changes, behavioural attributes, and experiential factors. A comprehensive 2x2x2 factorial experimental design is proposed, which integrates variances in message themes (health and finance), gain-loss framing, and age disparities. The research harnesses Neuro Information Systems (NeuroIS) techniques, including EEG and eye-tracking, combined with questionnaires, to capture users\u27 dynamic perceptions during phishing encounters. The anticipated findings aspire to shape HCI guidelines tailored for aging populations while contributing to developing user-centric security awareness programs and digital interfaces, mitigating cyber threat repercussions

    EFFECT OF STATIC AND HARMONIC LOADING ON THE HONEYCOMB SANDWICH BEAM BY USING FINITE ELEMENT METHOD

    Get PDF
    The aim of this paper is to present a proposed honeycomb core shape and compare it with a normal hexagonal shape core in a sandwich beam. The sandwich cores are simulated in finite element with different materials; aluminum and epoxy-carbon with six layers are used as face sheet and the results are compared to those obtained theoretically. Simulation of 3-point bending test is performed in commercial software ANSYS to verify the analytical results with the numerical ones. Hence, for simplicity one layer of the skin is used on the equivalent model of sandwich for lesser computational time and more accurate evaluation. Simulation of harmonic analysis of hexagonal core and proposed core shape is carried out in frequency domain to identify the core with less deformation under high frequency and it can withstand harmful effects. The proposed core shape model having the same cell numbers and material as the normal hexagonal model is compared with experimental results; it is observed that the proposed core shape model has good flexural stiffness, resonance, fatigue, and stress resistance at a higher frequency

    THERMAL BUCKLING AND BENDING ANALYSES OF CARBON FOAM BEAMS SANDWICHED BY COMPOSITE FACES UNDER AXIAL COMPRESSION

    Get PDF
    The bending and critical buckling loads of a sandwich beam structure subjected to thermal load and axial compression were simulated and temperature distribution across sandwich layers was investigated by finite element analysis and validated analytically. The sandwich structure was consisted of two face sheets and a core, carbon fiber and carbon foam were used as face sheet and core respectively for more efficient stiffness results. The analysis was repeated with different materials to reduce thermal strain and heat flux of sandwich beams. Applying both ends fixed as temperature boundary conditions, temperature induced stresses were observed, steady-state thermal analysis was performed, and conduction through sandwich layers along with their deformation nature were investigated based on the material properties of the combination of face sheets and core. The best material combination was found for the reduction of heat flux and thermal strain, and addition of aerogel material significantly reduced thermal stresses without adding weight to the sandwich structure

    FINITE ELEMENT ANALYSIS FOR DYNAMIC RESPONSE OF VISCOELASTIC SANDWICHED STRUCTURES INTEGRATED WITH ALUMINUM SHEETS

    Get PDF
    Passive vibration attenuation of modern mechanical structures is one of the most essential technologies applied to the arsenal of modern mechanical structures. In this work, dynamics analysis is performed on viscoelastic (VE) sandwich beam and plate by using finite element method. The proposed structure is composed of a VE core and aluminum face sheets as substrate layers on both sides of the structure. Small-strain VE material is modeled based on complex constant moduli model and numerical method is used to develop the finite element (FE) shear model based on first-order shear deformation theory (FSDT) and Hamilton principle. In modal analysis, model-effective mass analysis is performed to investigate its dominant mode shape and sweet spot at resonance using C3D20 and CPS8 elements. The former is indicated as a 3-D element with 20 nodes while the latter is indicated as a 2-D plane strain element with eight nodes. In harmonic analysis, resonance frequency is obtained based on mode superposition method to evaluate the steady-state response of VE sandwich beam via maximum deformation. Thereafter, the results are compared against analytical solutions from the literature. Moreover, a parametric study shows that the natural frequency of the beam did not change with the increase in core thickness. However, normalized loss factor of VE sandwich beam  is directly proportional to VE damping factor  and the thickness of VE core layer. Based on frequency response function, the results of resonance frequencies for VE beam are in the range of modal natural frequency

    Theorical investigation of adsorption mechanism of doxorubicin anticancer drug on the pristine and functionalized single-walled carbon nanotube surface as a drug delivery vehicle : a DFT study

    Get PDF
    Abstract: In this work, interaction and bond properties of anticancer drug doxorubicin (DOX), armchair single-walled carbon nanotube (SWCNT), and hydroxyl- and carboxyl-functionalized SWCNT (ƒ-SWCNT) have been investigated based on DFT theory to design, improve and expand carbon nanotube (CNT) drug carriers which is applied in biomedical systems such as drug delivery systems. Geometrical, structural, electrical, bonding and thermodynamic properties as well as optimized geometry, adsorption energies, quantum molecular descriptors, topological parameters and frontier molecular orbitals of different drug arrangements on CNT at the highest equilibrium at WB97XD/6–31 + G (d, p) level of theory at aqueous and gas phases were explored. Our calculations showed that hydrogen bonds between active sites of DOX molecules and hydroxyl- and carboxyl-functionalized CNTs played a more important role than those with pristine CNTs in the adsorption and fixation of the studied complexes as well as their thermodynamic energy. Using quantum theory of atoms in molecules (QTAIMs) method, intermolecular interactions and corresponding parameters at critical bonding points in aqueous and gas phases were also investigated. Evaluation of the results obtained from the natural bond orbital (NBO) analysis showed that the direction of electron movement was generally from drug molecule to CNT

    Recent developments in tensile properties of friction welding of carbon fiber-reinforced composite: A review

    Get PDF
    In this review article, the joining of carbon fiber-reinforced polymer composite with metallic materials by using friction welding techniques was discussed and the effects of process parameters on the weld properties were evaluated. Major parameters involved in this process were plunge depth (PD), dwell time, joining time, and tool rotational speed. A successful friction joint of carbon fiber-reinforced poly composite laminate (CF-PPS)-metal was formed with an interlayer film of additional polyphenylene sulfide. In addition, a detailed overview of the friction techniques was discussed, such as friction stir spot welding (FSSW), friction stir welding (FSW), and refill friction stir spot welding (RFSSW). In this current work, we had focused on the parameters, process, and their development during friction welding of similar and dissimilar metals with CFRP joint. Regarding the FSSW review, the best tensile shear load was 7.1 kN obtained from AA5182 and CFRP at a rotational speed of 3,000 rpm and 5 s welding time. The thickness for AA5182 and CFRP are 1.2 and 3 mm, respectively. The most efficient parameters are rotational speed, PD, dwell time, and shoulder penetration depth. In addition, the heat generated during the process parameters, its influence on mechanical and microstructure properties along with the possible defects and internal cracks of the similar and dissimilar welded joints will be reviewed and discussed

    FREE VIBRATION INVESTIGATION ON RVE OF PROPOSED HONEYCOMB SANDWICH BEAM AND MATERIAL SELECTION OPTIMIZATION

    Get PDF
    In this paper, free vibration, modal and stress state analyses of honeycomb sandwich structures with different boundary conditions was investigated and major factors affecting the sandwich frequencies and stiffness due to material or parameter changes were determined. The representative volume element (RVE) method used in this work were analytically and numerically validated by comparing the obtained results to those available in literature. Firstly, unit cell method was used to capture the entire effects of different parameters on the free vibration of honeycomb sandwich structure in ANSYS. This study analyzed the natural frequencies of honeycomb sandwich structures with different core materials combination. The effects of foil thickness, boundary conditions, materials selection, density and presence of crack on sandwich structure were taken into consideration and examined. The proposed core had an inbuilt shaped reinforcement with different materials for effective resonance, fatigue and deformation resistance at much higher frequency

    Enhanced removal efficiency of heavy metal ions from wastewater through functionalized silicon carbide membrane : A theoretical study

    Get PDF
    Abstract: Development and designing of heavy metal ion separation systems from wastewater play a essential role in environmental protection. For this purpose, in this research, we modeled the synthetic wastewater samples and investigated the capabilities of nano-porous silicon carbide membranes (SiC) with fluorine, nitrogen, and hydroxyl-atom decorated pores under hydrostatic pressures. Increase of applied pressure on SiC with larger pore diameters had more intense effects on water flux and ion rejection. It was also found that, due to different electronic properties of decorated atoms in the edge of pores, which played important roles in their interactions with water molecules and metal ions, as well as energy barrier and permeation, water flux and ion injection were improved. The potential of mean force (PMF) calculation showed that the energy barrier for passing through functionalized pores was higher for metal ions and lower for water molecules. The presence of functional groups in the edge of SiC pores provided selective ion rejection property which was highest for Zn2+ ions. PMF analysis results proved that the PMF values of metal ions were in the following comparative order: SiC@F>SiC@N>SiC@OH>SiC. It was also observed that increase in temperature significantly increased water flux and decreased ion rejection. Also, SiC membrane separation systems improved ion rejection in the presence of electric field along the opposite direction of piston movement, which was more intense in functionalized membranes and results indicated that in voltage of 200 mV/Å had the best ion rejection of about 98%

    The global burden of cancer attributable to risk factors, 2010-19 : a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background Understanding the magnitude of cancer burden attributable to potentially modifiable risk factors is crucial for development of effective prevention and mitigation strategies. We analysed results from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 to inform cancer control planning efforts globally. Methods The GBD 2019 comparative risk assessment framework was used to estimate cancer burden attributable to behavioural, environmental and occupational, and metabolic risk factors. A total of 82 risk-outcome pairs were included on the basis of the World Cancer Research Fund criteria. Estimated cancer deaths and disability-adjusted life-years (DALYs) in 2019 and change in these measures between 2010 and 2019 are presented. Findings Globally, in 2019, the risk factors included in this analysis accounted for 4.45 million (95% uncertainty interval 4.01-4.94) deaths and 105 million (95.0-116) DALYs for both sexes combined, representing 44.4% (41.3-48.4) of all cancer deaths and 42.0% (39.1-45.6) of all DALYs. There were 2.88 million (2.60-3.18) risk-attributable cancer deaths in males (50.6% [47.8-54.1] of all male cancer deaths) and 1.58 million (1.36-1.84) risk-attributable cancer deaths in females (36.3% [32.5-41.3] of all female cancer deaths). The leading risk factors at the most detailed level globally for risk-attributable cancer deaths and DALYs in 2019 for both sexes combined were smoking, followed by alcohol use and high BMI. Risk-attributable cancer burden varied by world region and Socio-demographic Index (SDI), with smoking, unsafe sex, and alcohol use being the three leading risk factors for risk-attributable cancer DALYs in low SDI locations in 2019, whereas DALYs in high SDI locations mirrored the top three global risk factor rankings. From 2010 to 2019, global risk-attributable cancer deaths increased by 20.4% (12.6-28.4) and DALYs by 16.8% (8.8-25.0), with the greatest percentage increase in metabolic risks (34.7% [27.9-42.8] and 33.3% [25.8-42.0]). Interpretation The leading risk factors contributing to global cancer burden in 2019 were behavioural, whereas metabolic risk factors saw the largest increases between 2010 and 2019. Reducing exposure to these modifiable risk factors would decrease cancer mortality and DALY rates worldwide, and policies should be tailored appropriately to local cancer risk factor burden. Copyright (C) 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license.Peer reviewe
    corecore